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Abstraet--A two-fluid model with zero slip between the phases but which allows for unequal phase 
temperatures, changing interfacial area and the effect of heterogeneous nucleation has been used to 
evaluate the initial depressurization of a subcooled or saturated light. The results compare favourably with 
existing water and dichlorodifluoromethane experiments and suggest that the algorithm, in association 
with well-tabulated data, could be used to evaluate the heterogeneous nucleation factor. 
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1. INTRODUCTION 

The depressurization of a vessel containing saturated or subcooled liquid may occur in a variety 
of industrial processes and often poses a potentially hazardous situation. It is a well-documented 
occurrence with many detailed observations available in the literature (e.g. Edwards & O'Brien 
1970; Alamgir & Lienhard 1981; Winters 1979). Attempts to model the fluid mechanics have met 
with varying success but it is clear from the work of Ferch (1979) and Hancox et al. (1975), 
among others, that a homogeneous equilibrium model is incapable of predicting the earliest 
phase of a rapid depressurization. The minimum requirement is for a two-fluid model which 
allows for thermal non-equilibrium. Edwards & O'Brien (1970), Wolfert (1976) and Ferch (1979) 
have demonstrated that such models usually have to build in some empiricism in order to 
obtain a match with experimental data. In none of the studies is the effect of nucleation taken into 
account. 

The problem of establishing averaged conservation equations for two-phase flows has received 
a considerable amount of attention (i.e. Vernier & Delhaye 1968; Ishii 1975; Bour6 1979). The 
major difficulty in modelling the equations arises through the complex geometry of the interfaces 
and their subsequent motions, the differing flow patterns depending on the geometrical boundaries 
of the flow field and the time scale of the flow. It is of course, the averaging in time and space 
of such complex interactions that gives rise to a loss of information and the introduction of source 
terms (Delhaye 1974) in the averaged equations which then have to be modelled. 

The source terms provide the link between the two phases at the interfacial boundaries and 
largely determine the success of predicting the behaviour of the motion of the two-phase fluid. For 
flows involving significant phase changes it is important to correctly represent the heat transfer 
from the liquid to the vapour and the corresponding mass transfer due to evaporation, flashing 
or diffusion. When slip between the phases becomes significant correct modelling of the interfacial 
forces of drag, virtual mass, lift etc. arising from the transient non-uniform pressure distribution 
along the interfacial boundaries becomes important (Drew 1983; Banerjee & Hancox 1978). As 
indicated by Kocamustafaogullari & Ishii (1983), the source terms also involve the interfacial area 
concentration which is not only dependent on the phase change across existing interfacial 
boundaries but also on the rate at which new interfaces are created by nucleation or destroyed by 
coalescence. 

The present study is primarily concerned with modelling the earliest phenomena involved with 
depressurization. As such slip between the phases is likely to be small, the effects of thermal 
non-equilibrium are significant. The role of nucleation and its effect on the interfacial area, and 
hence heat and mass transfer, is assessed and compared with available experimental data. 
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2. AVERAGED CONSERVATION EQUATIONS 

Averaged equations governing the motion of a one-dimensional two-phase flow, with no relative 
velocity are: 

c3 1 t~ 
ek p ,  + -~ ~z Aek Pk U = m~, -I- rhNu, [1] 

g 1 c ~ 01) OZ 
~t '~ Pk u + -~ ~z A e~, p ,  u 2 + r. k -~z = rhi, u - zi, --  Zw, - E, Pkg ~Z + rhr4v u [21 

and 

( u2) 
= Oik + qwk + *ik U + rnik hk + ~ i 

OZ 
--  E, pkUg ~Z + BCE. [3] 

The subscript k (= L or G) denotes the phase (liquid or vapour). The flow quantities E,, Pk and 
h, are the volume void fraction, density and enthalpy of phase k, respectively; u and p are the axial 
velocity and pressure of the mixture; rh and 4 are the rates of mass and heat transfer per unit 
volume; and r is the shear force per unit volume. The subscripts w, i and NU denote transfer from 
the wall, the interface and nucleation, respectively. BCE is the energy per unit volume transferred 
to the vapour when the liquid flashes (Fisher 1948; Frenkel 1955). A is the cross-sectional area, 
Z is the elevation of the gravitational acceleration and t and z are the time and space independent 
variables, respectively. 

Given the thermal and caloric equations of state, [1]-[3] may be transformed into their 
characteristic form and solved numerically. The boundary conditions for the present problem 
require that the pressure at the open end of the vessel be equal to the surrounding atmospheric 
pressure or to be choked. At the closed end of the vessel the velocity is zero. 

2.1. In terracial  heat  t ransfer  

The missing information, in the averaged equations of the equal velocity but unequal 
temperature (EVUT) approximation, is associated with the shear forces, the interfacial heat and 
mass transfers. The EVUT approximation is the simplest way of providing a description of the 
sudden depressurization of an initially subcooled or saturated liquid contained in a vessel. The 
usual assumptions (Winters 1979) in the modelling of the interfacial terms are that the two-phase 
mixture consists of a uniform dispersion of bubbles which are spherical and independent from one 
another. In addition, the slip between the phases is taken as zero. As shown by Ishii et al. (1982), 
the mass transfer is rh~ = q~/hm, where hLc is the latent heat, and the heat transfer is q~ = ~iFD, where 
~ is the interfacial area concentration and FD is a driving force. 

Most investigators assume that 

Ai 
e~ = T hi A T, [4] 

where A~ is the averaged interfacial area, hi is the heat coefficient, V is the volume of the two-phase 
mixture and AT is the difference between the interfacial temperature T~ and the phase temperature 
Tk. For a mixture consisting of spherical bubbles: 

Ai = Nb 4nr~,  [5] 

where N b is the number density of the bubbles and rb is the radius at the bubble. By definition the 
void fraction c is given as 

E = N b 4 n r 3  [6] 

and hence, 

E 
q i = 3 - - h i A T .  [7] 

rb 
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The heat transfer coefficient is a function of the Nusselt number Nu, the thermal conductivity 
kL and the bubble radius rb. For a stationary bubble, 

Nu 
h~ = ~ tel. [8] 

Nu is usually obtained through experimental correlations and for the present study the following 
value for a single sphere (Bird 1960) is used: 

Nu = 2 + 0.6 (2rb Us pL) 1/2 (Cp #L) I/3 
/ZL kL ' 

where Us is the relative velocity between the phases and /~L and Cp are the dynamic viscosity and 
specific heat (constant pressure) for the liquid phase. 

For zero slip, 

3 
qi = ~r~ E Nuk L A T. [9] 

It is also assumed that Tc = Ti. Similar forms of [9] have been used previously by Ferch (1979), 
among others, and invariably involve an undetermined constant which is chosen to provide a close 
fit to the available data. 

2.2. Number density production 
Ishii et al. (1982) and Kocamustafaogullari & Ishii (1983) postulated that the number of bubbles 

in a given control volume can be conserved. Thus, making use of the transport theorem, it follows 
that 

dnb = ~ 0N+ fs dt Jv at dr+ NbV.uds, 

where N b is the number density of the bubbles, nb is the total number of bubbles and u is the velocity 
field. It therefore follows that for an infinitesimal control volume 

aNb 
+ div NbU = total change of nb. 

at 

The change in Nb arises from homogeneous nucleation in the bulk of the liquid (HHoM), 
heterogeneous nucleation on the surfaces (/-/nET) and the rate at which bubbles coalesce (Hcoal). A 
term involving bubble growth due to the disintegration of larger bubbles could also be included 
but it is thought to be negligible for the size of the bubbles likely to be encountered in the initial 
phases of an expansion. The number density for one-dimensional flow is then given by 

aNb + u aNb aU 
at aZ + Nb-~z = HH°M + HHET-- Hc°aI" [10] 

Utilizing [1] and [3] together with the state equation p~ =f(p,hg), allows [10] to be written as 

Fapol ON b N b Dp N b De = HHOM "Jr HHET _ Hcoal __ N b (rhiG -k- rhNu ) + Nb BCE [11] 
Dt p~CZG Dt ¢ Dt pGe P~'---E LahoJ.-- ' 

which is in a form compatible with a solution by the method of characteristics. C~ is the speed 
of sound in the vapour phase and D/Dt is the directional derivative following the fluid particle path. 

Equation [11] requires that the nucleation rate be given. The theory of nucleation (Kagan 1960; 
Skripov 1974; Doring 1937; Fisher 1948; Volmer & Weber 1926) states that the rate of bubble 
formation is proportional to e x p ( -  ME/KaTL), where ME is the minimum molecular energy 
needed for the critical cluster to survive and is equal to (4/3)nr~, a. According to nucleation theory 
this energy is directed towards (a) the formation of voids of critical size and (b) the evaporation 
from the interface and filling of the void with vapour molecules. KB, TL and a are the Boltzmann 
constant, the liquid temperature and the surface tension, respectively, r ,  is the radius of the critical 
cluster, which is defined as the smallest bubble which can survive in the metastable liquid during 
the irreversible process of phase transition. The proportionality factor depends on the rate per unit 

]JMF 16/~" 
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area at which a bubble surface gains or loses molecules. Assuming that the critical bubble is in 
mechanical and chemical equilibrium with the surrounding liquid, the critical size is given by 

2~r 
r , -  AP '  [12] 

where AP is the pressure difference between the saturated vapour and the superheated liquid. The 
rate of critical bubble formation is then given by 

( HHOM = N 2aN exp , [13] 
7~ . M W - B  3Ka-T~L--AP2J 

where N is the number of molecules per unit volume, MW is the molecular weight and B is a 
coefficient in the equation of the work needed for bubble formation which takes into account 
chemical or mechanical equilibrium. In this study B = 2/3 and NA is the Avogadro number. Using 
[12] and [13] it can be shown that homogeneous nucleation is only possible when the degree of  
superheat is in excess of a few hundred degrees. In most experimental studies the temperature 
difference is less than the superheat for homogeneous nucleation. This indicates that bubble 
generation does not occur in the bulk of the liquid but mainly on the walls of  the container or 
on impurities in the liquid. Therefore, HHO M can be considered negligibly small. At the beginning 
of a depressurization Hco,~ might also be considered small. 

As shown by Blander & Katz (1975), the heterogeneous nucleation rate can be written as 

HHET = N23(1 - -m)  ( 2"aNA )12 I - M E .  qS, exp - - -  . [14] 
2 r c ' M W ' B ' 4 '  ~ KaTE ) 

It may be noted that the surface tension is generally a function of the temperature and of the 
form ~ = a :~ (1 - T/Tc)", where the subscript c is a reference condition; ~b is a heterogeneous factor, 
< i, which physically implies that the molecular clusters formed on a rough surface or suspended 
particles need less energy to survive. Bubbles formed in this manner assume a shape bounded by 
a plane and a portion of spherical surface. Applying Young's equation at the edges of the bubble 
yields m = (aSL -- as6 )/O'L6, where aSL, aSC and aL6 are the surface tensions between liquid and solid, 
vapour and solid, and vapour and liquid, respectively. It is readily shown that m is equal to - c o s  0, 
where 0 is the contact angle at the bubble surface. Blander & Katz (1975) show that q~ and m are 
linked by 

(2 - 3m + m 3) 
4' = [15] 

4 

Equation [14] in conjunction with [11] allows the number density of  the bubbles to be evaluated 
at all points in the flow field. From [6] and [7] the interfacial heat transfer can be written in terms 
of the number density and the void fraction as 

qi = 3.9 N~'3c I/3NUkL AT. [16] 

As one can observe there are no free parameters attached to the above equation (unlike [9], where 
rb has to be specified a priori). N b, c and A T are readily evaluated by the equations of motion. Thus, 
the restriction of  specifying a constant value of the bubble size or the number density used in many 
models is now removed. 

3. D I S C U S S I O N  

Although it has been recognized that thermal non-equilibrium has to be allowed for, most 
previous studies (Edwards & O'Brien 1970; Hancox et al. 1975; Banerjee & Hancox 1978; Winters 
1979; Ferch 1979) have only obtained agreement with experimental observations by assigning an 
arbitrary constant value to rb or Nb in [9]. Edwards & O'Brien (1970) introduced a constant number 
density N b linked to the interfacial heat transfer and showed that a value of N b = 1 0  9 bubbles per 
unit volume yielded a solution close to experimental observations. Winters (1979) and Wolfert 
(1976) used a similar formulation for the heat transfer and by judicious choice of the constants 
secured agreement with experiments. 
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Figure 1. Long-term pressure history [comparison with the Freon 12 experiments of Winters (1979)]. 

A similar calculation based on [9] with r b = 2.9 10 - 4  m is shown in figures 1 and 2 and compared 
with the experimental data of  Winters (1979). Although a reasonable fit to the long-term behaviour 
of  the pressure transient is observed (figure 1), this is not true of  the minimum pressure and the 
rate of  pressure recovery (figure 2). The effect of  changing the initial bubble size is shown in figure 
2, where a decrease in bubble radius tends to increase the rate of  pressure recovery and the 
maximum pressure. This variation with rb is slightly different to that observed by Ferch (1979) and 
is due to the different exit boundary condition he imposed, which had the effect of  increasing the 
mass hold up in the vessel. 

To improve the model for heat transfer it is essential that the effective bubble radius is allowed 
to vary in time and space. From section 2 this implies that nucleation has to be allowed for. To 
illustrate the role of nucleation the EVUT models are used to simulate the experiments of  Winters 
(1979), which used a 0.64 m cylindrical pressure vessel containing Freon 12. The advantage of  using 
a small vessel is that all nucleation and heat transfer effects can be assumed to be independent of  
the slip between the phases. 
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Figure 2. Initial depressurization. 
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The nucleation model presumes Nb is initially zero and it is therefore free of the problems 
associated with previous models. However, a new parameter q~ is introduced which is a function 
of the contact angle 0 between the tangent to the interface and the wall at the vessel or any 
impurities in the bulk of the liquid. 

Because of the inherent difficulties in prescribing a value of q~, the nucleation model relies on 
careful selection of ~ to agree with the experiment; ~b is chosen so that the minimum pressure is 
predicted. From figure 2 it will then be noted that once this value is fixed the initial rate of 
depressurization and the rate of recovery agrees quite well with experiment. However, in the longer 
term (figure 1), the model seriously under-predicts the pressure, which suggests nucleation is no 
longer the main sustaining mechanism of the pressure inside the vessel. 

During a fast depressurization the initiation of boiling, for a given set of initial conditions, does 
not take place at any particular pressure but can occur over a whole range of pressures. The vapour 
production, however, depends on the mechanics of nucleation (homogeneous or heterogeneous) 
and on the degree of superheat of the system. Using [12] and assuming that the liquid is 
incompressible and that the depressurization rate is fast, the temperature of the liquid remains 
almost constant as does the saturation temperature of the vapour and the surface tension. The 
reduction of the liquid pressure will give a whole range of critical sizes, i.e. critical bubble areas 
(see figure 3) corresponding to a given superheat. For homogeneous nucleation figure 3 shows that 
the surfaces of the critical bubbles for low superheats are quite big and since the critical work is 
proportional to the bubbles' area, this means that large amounts of energy have to be directed 
towards the point of flashing by the temperature and pressure fluctuations, which in turn mean 
almost zero probability of bubble production. There is a theoretical limit the metastable liquid can 
reach before it nucleates and this is the border between the metastable liquid region and the 
unstable two-phase region; the border is known as the spinodal line. In reality, homogeneous 
nucleation starts before that point if there are no artificial nucleation sites to provoke hetero- 
geneous nucleation. For heterogeneous nucleation figure 3 shows that the critical bubble is smaller. 
Assuming that a critical bubble is a small segment of a sphere, with radius r, and 0 is the angle 
between the tangent to the interface and the wall, the surface area of the segment is 

S = 4~tr2 ( 2 +  3c° s0  - c°s3 0) 
4 

With the aid of [15] this shows that S = 4nr2c~. 
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Figure 3. Dependence of the liquid superheat on the critical surface area of the vapour bubble in 
equilibrium. 
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From the definition of ~b is it apparent that the "heterogeneous factor" gives an indication of 
how well the critical cluster is protected by the wall. For example, if the wall is plane and 0 = 90 °, 
that will mean that only half of the bubble is exposed to the flow and for 0 = 90 ° ~b can be calculated 
to be 0.5 (50%). When 100% of the bubble rests on the wall ~b = 1 and 0 can be calculated to be 
0 °. In the present study ~b has an averaged value, i.e. an averaged value for 0 which corresponds 
to the majority at the nucleation sites which when they nucleate the vapour production will be 
enough to release the liquid's superheat. From the above it is apparent that the presence of the 
wall or any impurity in the liquid means less interface area (between the critical bubble and the 
liquid), which means less critical work and therefore a higher probability for nucleation. 

In terms of the critical homogeneous bubble size as a function of pressure, theory predicts 
negative pressures where dp/du = 0; the spinodal line giving the theoretical nucleation point. The 
experiments, on the other hand, show a positive pressure. Theory can only account for this if the 
function of critical surface with the degree of superheat is multiplied by a factor ~b which physically 
accounts for the role of the wall and impurity surfaces which can protect the nuclei. ~b does not 
account for all effects, e.g. Kenning & Thirunaruktarasu (1970) showed that the phenomenon of 
nucleation is not necessarily reproduced when tests with the same surface and initial conditions 
are carried out, and it was suggested that the rewetting rate of a surface can affect the number of 
available nucleation sites. These non-quantifiable effects make ~b difficult to predict. 

Figure 2 demonstrates that the nucleation model follows more closely the experimental pressure 
history than the model which uses a simple heat transfer rate. This arises because in the first few 
milliseconds the system is in thermal non-equilibrium and it is in this period when most nucleation 
occurs. The simpler model always emphasizes the pressure undershoot and can be in error by up 
to 50%. Also, the rate of recovery of pressure is much slower. Some indication of the sensitivity 
of the solution to ~b is given in figure 4. When tk is large (i.e. low vapour production), a lower 
pressure minimum can be observed together with smaller pressure recovery. When ~b is small (high 
vapour production), the excess vapour produces the opposite effect. 

Further comparisons of the model can be made with the experiments of Edwards & O'Brien 
(1970), which have often been used as benchmark data. In figure 5 (curve b) a comparison is made 
between experiments, with initial conditions of 70 bar and 515 K, and the EVUT nucleation model. 
By fitting the minimum pressure good agreement is obtained. In contrast to other reported models, 
this agreement has been obtained without any special manipulation of the exit boundary conditions 
or empirical constants to determine the interfacial heat transfer. 

Also shown in figure 5 (curve a) is the effect of keeping the surface tension constant for simulating 
the water experiments. As can be seen, the rate of depressurization is too slow and clearly indicates 
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Figure 4. The effect of the heterogeneous factor ~b on the initial pressure history. 
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Figure 5. Comparison of the EVUT nucleation model with Edwards & O'Brien's (1970) water 
experiments. 

that the large temperature variation arising in the water experiments has to be taken into account 
when evaluating the surface tension. As noted earlier, the temperature variation in the Freon case 
is sufficiently small for the surface tension to be considered constant. The theory predicts the 
metastable region but tends to over-predict the pressure maximum. This may arise because the 
nucleation theory provides an expression for the steady-state rate of nucleation based on the 
maximum free energy barrier for the given conditions of the metastable liquid surrounding the 
nucleus, and by assuming that these conditions are unaffected by the other surrounding nuclei. 
Near the pressure minimum, where the rate of nucleation is high, the growth or collapse of a newly 
formed bubble will strongly depend on other small bubbles and the large bubbles which are growing 
rapidly through heat and mass transfer through the interface. As the liquid superheat is rapidly 
being released into the vapour phase the conditions surrounding the nucleus change and affect the 
two major modes of spontaneous growth, i.e. through evaporation and condensation. At that stage, 
even a single molecule coming out of or going into a bubble could result in it collapsing or growing. 
This crowded effect will not only change the properties of the interface but the whole mechanical 
and chemical equilibrium between the two phases. Compression waves arising through bubble 
growth, slip and bubble rotation will affect the pressure difference between the phases and change 
it from 2a/r. Enhanced surface tension and pressure differences between the phases for the critical 
bubble size will increase the free energy barrier and therefore more energy will be required from 
the metastable liquid to nucleate. This in turn will reduce the nucleation rate. 

As a simple approximation to assess the crowded effect, curve c in figure 5 is obtained by 
assuming a = cr (Ts) up to the minimum pressure and thereafter, when the effect of the surrounding 
bubbles becomes increasingly important, the surface tension is assumed constant and equal to the 
value at the point of minimum pressure. Curve d is similar to curve b in figure 5, but with the surface 
tension after the point of minimum pressure increased by 25%. This increase in ~ reduces 
nucleation and provides better agreement in the early phases of the expansion. Further progress 
requires a model to explain the crowded effect on the nucleation rate. 

In comparison with the Freon 12 data of Winters (1979) (figure 1) the results show better 
agreement. There are two factors which might be responsible for this. One is the degree of 
penetration of the system into the metastable region, which would change the nucleation rate and 
change the rate at which the metastable liquid returns to equilibrium. Using van der Waals equation 
it can be shown that in the water experiments the system is closer to the spinodal line than in the 
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Freon 12 experiments. The other relates to the number of molecules in the bulk of the liquid. 
Skripov (1974) showed that the number of molecules affects the frequency of the fluctuation 
fo/'mation of nuclei. It may be noted that water is richer in molecules than Freon 12. 

The fact that the model describes quite accurately the variation of pressure up to, and beyond, 
the point of minimum pressure suggests that an averaged value of q~ could be unambiguously 
determined from experiments similar to those reported by Alamgir et al. (1980). 

4. CONCLUSIONS 

A satisfactory description of the early phases of a rapid depressurization of a subcooled or 
saturated liquid requires the effect of nucleation to be accounted for and allowance to be made 
for the time variation of the interracial area concentration. Whilst the reported model is free from 
many of the defects present in earlier studies, the agreement with experiments still depends on 
careful choice of one parameter. This parameter is intimately related to the effect of heterogeneous 
nucleation, which in the most ideal conditions is difficult to specify a priori. 

Acknowledgement--P. Deligiannis gratefully acknowledges the support of the Onassis Public Benefit 
Foundation. 
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